Thinklogical, A BELDEN BRAND
100 Washington Street
Milford, Connecticut 06460 U.S.A.
Telephone: 1-203-647-8700
Fax: 1-203-783-9949
www.thinklogical.com
Copyright Notice

Copyright © 2017. All rights reserved. Printed in the U.S.A.

Thinklogical, A BELDEN BRAND
100 Washington Street
Milford, Connecticut 06460 U.S.A.
Telephone: 1-203-647-8700

All trademarks and service marks are property of their respective owners.

Subject: TLX640 10G Matrix Switch Product Manual
Revision: E, June 2017

Website: www.thinklogical.com
Facebook: www.facebook.com/ThinklogicalUSA
LinkedIn: www.linkedin.com/company/thinklogical
Google+: http://plus.google.com/u/0/109273605590791763795/about
YouTube: www.youtube.com/user/thinklogicalNA
Twitter: @thinklogical
Table of Contents

PREFACE .. v
About Thinklogical® .. v
About This Product Manual ... vi
Note and Warning Symbols ... vi
Class 1 Laser Information .. vi

SECTION 1: THE TLX SYSTEM FEATURES .. 1
Features of the TLX Matrix Switch & Extender System ... 2
The TLX640 Design ... 6
 Power Supply Modules ... 7
 The Controller Cards ... 7
 The Interconnect Module .. 10
 The Fan Tray Module ... 10
 The Input/Output Cards .. 11
 Port Numbering ... 11
 The Switch Card Modules ... 13

TLX640 Features ... 13
 Status LEDs ... 14
 Technical Specifications ... 15
 Product Compatibility ... 15

SECTION 2: SET-UP AND INSTALLATION ... 16
Contents ... 16
Unpacking the TLX640 ... 16
Connecting to the TLX640 ... 17
 Ethernet Control ... 17
 TLX640 DIP Switch Settings .. 17
 External Control CPU Minimum Requirements ... 18
 Pluggable SFP+ Modules .. 18
 Fiber-Optic Cable .. 19

TLX Extender Fiber-Optic Cable Configurations .. 20
TLX Extender CATx Cable Configurations ... 21
Input/Output Cards ... 22
 Routing Thinklogical Extenders through the TLX640 ... 23
 Connecting to a Receiver ... 23
 Connecting to a Transmitter .. 23
 Connecting to a Control CPU .. 24
 Firmware ... 25
 On Screen Display (OSD) - Firmware Option ... 25
 Updates .. 25
 Order Of Installation Events .. 25
 Safely Remove an Active Control Card or Shut Down of the System 25

How to Install and Replace Modules ... 26
 How to Install and Replace an **Input/Output Card** ... 26
 How to Install and Replace an **Interconnect Module** .. 27
 How to Install and Replace a **Switch Card** ... 27
 How to Install and Replace a **Controller Card** ... 28
 How to Install and Replace a **Fan Tray** .. 28
 How to Install and Replace a **Power Supply** .. 29

Ordering Information ... 29
About Thinklogical

Thinklogical, a Belden brand, is the leading manufacturer and provider of fiber optic and CATx KVM, video, audio, and peripheral extension and switching solutions used in video-rich, big-data computing environments.

Thinklogical offers the only fiber-optic KVM matrix switches in the world that are accredited to the Common Criteria EAL4, TEMPEST SDIP 24 Level B, and NATO NIAPC Evaluation Scheme: GREEN and the U.S. DoD DISA JITC UCR 2013 APL information assurance standards. And Thinklogical Velocity products are the first system with both KVM and video matrix switching capabilities to be placed on the Unified Capabilities Approved Product List (UC APL) under the Video Distribution System (VDS) category.

Governments, entertainment, scientific and industrial customers worldwide rely on Thinklogical’s products and solutions for secure, high performance, continuous operation and ease of integration. Thinklogical products are designed and manufactured in the USA and are certified to the ISO 9001:2008 standard.

Thinklogical is headquartered in Milford, Connecticut and is owned by Belden, Inc., St. Louis, MO (http://www.belden.com). For more information about Thinklogical products and services, please visit www.thinklogical.com.

Follow Thinklogical on LinkedIn at http://www.linkedin.com/company/thinklogical,
on Facebook at http://www.facebook.com/ThinklogicalUSA,
and on Twitter at https://twitter.com/thinklogical.
About This Product Manual

This product manual is divided into four sections: TLX System Features, Set-Up & Installation, Regulatory & Safety Requirements and Thinklogical Support. These are sub-divided to help you find the topics and procedures you are looking for. This manual also contains Appendices.

Section 1 – The TLX System Features: Page 1. Details the features and functions of your equipment.

Section 2 – Set-Up and Installation: Page 16. Contains all the requirements and procedures necessary to connect and install your equipment, including FPGA updates.

Section 3 – Safety & Regulatory Requirements: Page 30. Thinklogical® strongly recommends that you read this section prior to starting the hardware assembly.

Section 4 – Thinklogical Support: Page 32. Thinklogical provides the best customer support available. If you have any questions or need to contact us for any reason, please refer to this section of the manual.

Note and Warning Symbols

Throughout this manual you will notice certain symbols that bring your attention to important information. These are Notes and Warnings. Examples are shown below.

⚠️ Note: Important Notes appear in blue text preceded by a yellow exclamation point symbol, as shown here.

A note is meant to call the reader’s attention to helpful or important information at a point in the text that is relevant to the subject being discussed.

⚠️ Warning: All Warnings appear in red text, followed by blue text, and preceded by a red stop sign, as shown here.

A warning is meant to call the reader’s attention to critical information at a point in the text that is relevant to the subject being discussed.

BEFORE STARTING ANY PROCEDURE, IT IS RECOMMENDED THAT YOU READ THE INSTRUCTIONS THOROUGHLY!

Class 1 Laser Information

The TLX640, like all Thinklogical® products, is designed and identified as a Class 1 LASER product. This means the maximum permissible exposure (MPE) cannot be exceeded when viewing the laser with the naked eye or with the aid of typical magnifying optics (e.g. telescope or microscope).
Section 1: The TLX System Features

The Logical Solution

The TLX640 is a 10G high performance modular, non-blocking matrix switch that supports full, uncompressed 4K video with full color depth at 60Hz frame rate for complete, end-to-end routing of video and peripheral signals over multi-mode or single-mode fiber optic cable.

This highly reliable and resilient matrix switch is expandable from 20x20 ports up to 640x640 ports, which allows for highly flexible deployment configurations. In addition, the TLX640 series provides mission critical dependability and unrivalled signal integrity. Being protocol agnostic, the switch supports DVI, SDI, HD-SDI, Dual-link DVI, Dual-link SDI, USB HID, USB 2.0 and audio.

Thinklogical’s TLX640 Matrix Switch® includes:

- (2) Redundant, Current Sharing Power Supply Modules for the Upper Cage
- (2) Redundant, Current Sharing Power Supply Modules for the Lower Cage
- (1) Fan Tray Module (includes three fans)
- (1) Primary Controller Card
- (8) Switch Cards
- (1) Interconnect Card

Optional Modules (Spares):

- TLX640 Data Input/Output Card, 20 Ports, SFP+
- TLX640 Fail-Over Controller Card
- TLX640 Switch Card
- TLX640 Fan Tray
- TLX640 Power Module

The TLX640 is available with LC-type fiber connectors.
Features of the TLX Matrix Switch & Extender System

UNCOMPRESSED 4K

Introducing Thinklogical’s newest family of switching and extension solutions, for uncompressed, high resolution video and KVM systems over fewer cables.

Offering a higher bandwidth solution, the TLX product line provides 10Gbps bandwidth per port to preserve signal integrity and provide uncompressed, high resolution video with no artifacts, latency or lost frames.

The TLX product family offers these features to enhance ease of integration:

- **Hybrid switching solutions** (fiber and CATx) start at 16 ports and scale up to 640 ports.
- A higher bandwidth solution to address new video resolutions and prepare for future protocols.
- Reduces system cabling by half by enabling through higher bandwidth.
- Extend and switch:
 - Single display up to 4096x2160 @ 30Hz with full 4:4:4 color depth, over a single fiber or CATx cable (or dual displays up to 1920x1200 @ 60Hz with full 4:4:4 color depth)
 - Single display up to 4096x2160 @ 60Hz with full 4:4:4 color depth, over two fibers or CATx cables (or dual displays up to 4096x2160 @ 30Hz with full 4:4:4 color depth)
 - Dual displays up to 4096x2160 @ 60Hz with full 4:4:4 color depth, over four fibers or CATx cables
- Dual connectors on TLX Extenders, offering support for both HDMI and DisplayPort, reduces the number of extenders and converter cables required and enables users to future-proof system designs.
- Interoperability with Thinklogical’s Velocity family of switch and extension solutions, to ensure an easy upgrade path and a smooth transition to Thinklogical’s next generation solution.

HYBRID SWITCHING SOLUTION

For Uncompressed, High Resolution Video & KVM Systems

Thinklogical’s TLX Matrix Switches are high performance, modular, non-blocking switches for complete end-to-end switching of video, audio and peripheral signals over multi-mode or single mode fiber optic cable or CATx cable.

TLX switches are protocol agnostic, supporting most video, audio and peripheral signals and allow users to consolidate all of their system switching requirements in a single chassis. TLX Matrix Switches are ideal for small to large system applications, with switch sizes ranging from 12 ports to 640 ports. Each port supports 10Gbps bandwidth, preserving signal integrity to provide uncompressed, high resolution video.
video with no artifacts, latency or lost frames. Thinklogical’s re-clocking technology ensures that every video and data stream is delivered in perfect synchronization.

SECURITY

Creating physical separation between potential threats (users) and the target (secure data) is essential to a secure system design. Thinklogical’s system permits users to access sources up to 80 kilometers away, with no performance degradation. System administrators can safeguard sources in a centralized location, allowing users to maintain remote access to the sources, but with no means to breach the system, either accidentally or intentionally (such as downloading sensitive information onto a USB drive).

PARTITIONED AND RESTRICTED SWITCHING

To protect data between multiple networks, partitioning allows the switch resources to be divided to support more than one network without allowing switching between networks. Restricted switching allows the administrator to manage access on a port-by-port basis. Partitioned and restricted switching is enabled through the switch’s firmware, which means a threat would have to physically access the switch to tamper with the settings. (See Appendix D: Secure Applications, pg. 38.)

Note: CATx Matrix Switching applications do not offer an EAL4 rated level of security.

RESILIENCY

TLX switches are designed to maximize system uptime. The modular approach of the TLX allows user to hot-swap all critical system components, including power supplies (in dual supply models), fan trays, control cards, input/output cards and pluggable optics. Furthermore, the system can be easily reconfigured, such as adding additional input/output cards for expansion, without ever turning off the switch or interrupting active signals. Redundant and current-sharing power supplies ensure continuous, uninterrupted power to the switch. Matrix switches are also configurable to include redundant control cards with automatic failover. Enhanced diagnostics and alarms provide extensive real-time monitoring and diagnostics of critical functions of the switch.

SYSTEM FUNCTIONALITY

TLX Extension Systems have a simple transmit and receive design. The TLX Transmitter connects to the source to receive video, audio and peripheral data. Utilizing Thinklogical’s proprietary multiplexing technology, the data is transmitted over fiber through 10Gbps SFP+ technology for up to 80 kilometers, or over CATx cable for up to 100m. At the TLX Receiver, Thinklogical de-multiplexes the data stream to deliver uncompressed, high resolution video, audio and peripheral data at the end-user’s workstation.

TLX extension systems are highly configurable to suit the requirements of any application. Extenders are configurable to support up to 4K video (4096x2160) @ 60Hz, full duplex stereo audio, serial (RS-232), USB HID, USB 2.0 (480Mbps) and 10/100/1000 Network. The TLX design offers support for both HDMI 1.4 and DisplayPort 1.2 connector types in a single extender, with full support for HDCP content.

Additionally, TLX extension systems support embedded audio, with the ability to de-embed audio at the receiver. All extenders are equipped with an additional output for a local display, as well as an Ethernet port for configuration management and updates.

For high-availability applications, redundant fiber path configurations are also available.

The TLX extension systems are compatible with a full line of scalable, non-blocking TLX matrix switches, ranging from 12 to 640 ports.
Thinklogical’s proprietary multiplexing technology combines video, audio and peripheral data on a single data stream for up to 80km over a single fiber-optic cable or up to 100m over a single CATx cable.
FORM FACTOR
TLX extension systems are available in a modular form factor. The modular extenders are compact and hot-swappable, so users can field-configure any modular chassis. For fiber extenders, the optical modules, or SFPs, are also hot-swappable. The modular system promotes system flexibility, scalability and reduced maintenance.

The TLX Modular Extender Chassis Line
Several chassis types are compatible with all TLX modular extenders, allowing users to mix-and-match chassis types to reduce the overall footprint of the design. Users can choose from the resilient, rack mount chassis (housing up to four video extenders or up to two KVM extenders in a single rack unit) with redundant and hot-swappable power supplies, or from our more compact, space-saving designs for desktop applications.

Each TLX Chassis accommodates the full line of TLX Extender Products.
- The CHS-000004 is a rack-space-saving, high-reliability rack mount unit for up to 4 modules of HDMI, DVI, RGB or SDI in a compact 1U chassis.
- The CHS-000002 is a desktop solution that accommodates one 7.4” or two 3.7” modules of HDMI, DVI, RGB or SDI in a compact, desktop chassis. Rack-mount attachments are available.

Ready for the challenges of demanding applications, both the CHS-4 and CHS-2 Chassis can combine a variety of HDMI, DVI, RGB or SDI modules in transmit/receive units for a space-saving and cost-effective solution.
- The CHS-000001 stand-alone chassis will accommodate one 3.7” TLX video module.

All TLX Extender Chassis are powered by standard 100-240 VAC, 50-60 Hz.
THE TLX640 DESIGN

The modular approach of the TLX640 Matrix Switch (sometimes referred to as a Switch or Router) allows all critical system components, including switch cards, power supplies, cooling fans and pluggable optics (SFP+) to be hot-swappable, thus minimizing business impact during reconfigurations, updates or failures.

The Interconnect Card is modular, but not hot-swappable. It can be replaced easily in the field, but the TLX640 10G system would have to be shut down for this replacement.

Thinklogical’s TLX640 line replaceable modules include:

- (2) Redundant, Current Sharing Power Supply Modules for the Upper Card Cage
- (2) Redundant, Current Sharing Power Supply Modules for the Lower Card Cage
- (1) Fan Tray Module (includes three fans and enunciator ports)
- (2) Controller Cards (primary/backup)
- (8) Switch Cards
- (1) Interconnect Card
- (Up to 32) TLX640 Data Input/Output Cards, 20 Ports, SFP+
- (2) Cable management racks

![Diagram of TLX640 Matrix Switch](image-url)

Note: All modules may be replaced without interruption to other module functions.
POWER SUPPLY MODULES

The dual, redundant power supplies for each card cage ensure continuous, uninterrupted power. The supplies are current sharing which means the supplies share the load equally. If a power supply fails, the redundant power supply can support the entire current load of one fully populated card cage. Although the TLX640 functions properly with one Power Module per card cage, Thinklogical recommends that both modules be used, preferably connected to independent power sources for redundancy.

Additionally, the hot-swappable feature allows easy replacement of a module without interrupting the TLX640’s system functionality.

All four power supplies should be turned on during normal use, even if one of the card cages is not populated with modules.

The Power Supply Modules support an input of 180-264VAC (1200 W) 50-60Hz. Use the proper power cord for your region: 250V/20A (4 supplied with the unit).

NOTE: High line is required to achieve 1200 W.

THE CONTROLLER CARDS

The hot-swappable Controller Card connects the Matrix Switch to an External CPU. The RS-232 serial port may be used for third party controller integration (such as Crestron, AMX or home-spun interfaces). Also, the Configurator Software may be used to control the switch via the LAN port.

A Secondary (or Backup) Controller Card ensures uninterrupted functionality if the Primary should fail or need to be replaced. The Primary Controller should always be in the upper controller slot. The Secondary Controller must have a LAN connection that allows it to communicate with both the Primary Controller and the Configurator server (required in order for the Secondary Controller to take control of the switch). Both controller cards must have the same CPU module/Processor.
THE PROCESSOR – i.MX 6 QUAD (Freescale)

The Processor platform key features:

- ARM Cortex-A9 MPCore 4 x CPU
- Memory Interfaces
 - 64-Bit DDR3-1066
 - SD (Memory Card Specification, v3.0 including high-capacity SDHC cards up to 32 GB.
 - Serial NAND Flash (SPI)
 - SATA II, 3.0 Gbps HDD
 - EIM Bus (FPGA Parallel Bus I/F)
- HDMI 1.4 port
- USB 2.0 Host (2 ports)
- UART (4 ports)
- Gigabit Ethernet Controller (RGMII)
- GPIO (32 bits)
- I2C Masters (3 ports)
 - Internal 100 Megabit Ethernet Interface for Controller to Controller communications

THE NETWORK INTERFACES

The TLX640 uses up to three IP addresses. The primary Controller Card uses address X and address X+100. The backup Controller Card uses address X+1 and will take over address X in the event of a failure in the primary Controller Card. These addresses are set by an internal DIP switch. (See Appendix B: Setting the DIP Switch Instruction, Pg. 36.) The primary’s IP address can be set from 15 to 45. The default subnet used by the TLX640 is 192.168.13.xxx. The user may use their own subnet by reconfiguring the switch’s network startup.

This procedure is detailed in the document: IP_Address_Change_Guide.pdf.

The TLX640 uses several network ports for control and status. Port 17567 accepts commands to control the switch.

The command API is described in the manual: Router_ASCII_API.pdf.

There are other ports that can be read to access system configuration and operating data. The actual data format varies by model and is described in the following sections. There are five blocks of data available for reading.

These ports are documented in the manual: Router_Interfaces.pdf.

1. Switch connection status (broadcast over port 17564 every few seconds)
 - The primary CPU IP address
 - Upper or Lower chassis flag
 - First port number in this block
 - Last port number in this block
 - 'N' port number values

2. Port settings (UDP port 17565, matrix switch localhost only)
 - Port output level value
 - Port input enable status
 - Input port number (big-endian format)

3. Hardware sensor status (TCP port 17566)
 - Reserved for future use.
4. Alarm, Inventory and Power Supply Status (TCP port 17600)
 • State of the alarm contacts
 • Card Inventory
 • Power Supply Status (internal TL use only)
 • Switch card temperature readings

5. I/O card data (TCP ports 17601 through 17640, 1 port per I/O card)
 • SFP installed bits
 • SFP TxDisable bits
 • SFP TxFault bits
 • SFP LOS bits
 • I/O card type
 • I/O card temperature
 • SFP serial ID data
 • SFP Diagnostic data

6. Service Request (LOS) Signaling (UDP port 17560)
The TLX640 can broadcast a message over the network when a remote receiver requests attention.
When enabled, the receiver will toggle its TX pin, causing a LOS (loss of signal) event to occur at the
matrix switch. When detected, the TLX640 broadcasts an 'Attention Request' message over the network.
This message contains the IP address of the switch and the port number that detected the request. It is
left up to an external system to detect, decode and act upon this request.
 • 32-bits, matrix switch's primary IP address
 • 16-bits, 0 for the Upper (or only) matrix switch chassis, 1 for the Lower matrix switch chassis
 • 16-bits, port number (list starts from 1, not 0)
 • 16-bits, key code in bits 0 – 7, 0x00 and 0xff are ignored

SNMP SUPPORT
The TLX640 can be monitored via SNMP Simple Network Management Protocol (supports version V2c
and V3 USM). Please call our technical support staff at 1-203-647-8700 for downloadable MIB
Management Information Base definition files.

There are a few entries in the SNMP configuration file (/etc/snmp/snmpd.conf) that users may want
to modify:
 • syslocation Text to aid in locating the unit
 • syscontact Name/Phone/email address of a contact
 • trap2sink IP address/name of a system to receive SNMP traps

The default name used by trap2sink is 'snmp.trap' and is defined in the file /etc/hosts as pointing to
127.0.0.1. The easiest method to change the trap address is to modify the /etc/hosts entry and not
change the trap2sink setting in the configuration file. You may have multiple trap2sink entries in the
configuration file to specify multiple trap destinations.

NTP SUPPORT
NTP, or Network Time Protocol, is used to keep the internal clock on the switch set to the correct
time. By enabling this service, users keep the switch’s clock synchronized to an external time reference.
In order to use the service users must have a time server running on their network or allow the switch to
access a public time server. NTP configuration is contained in the file /etc/ntp.conf

Details about NTP configuration may be found at:
http://tldp.org/LDP/sag/html/basic-ntp-config.html
SYSTEM LOG FILES SUPPORT
The TLX640 records system events into files located in the directory `/var/log/`. If you wish to preserve log files, you may redirect the logs to another system(s). This is a standard feature of Linux's rsyslogd program. Redirection is enabled by entries in `rsyslog` configuration files located in `/etc/rsyslog.d/`

Details about syslog configuration file entries may be found at: `http://www.rsyslog.com/doc/`

SERIAL/RS-232 INTERFACES
The Controller Card has two RS-232 serial ports. One Controller Card is for the Linux command line interface (labeled CONSOLE), and the other is for the switch's ASCII command interface (labeled RS232). If a backup Controller card is installed, then its Linux console port is active, but only the RS232 port on the active Controller Card will function.

Linux Command Console (Console)
- Baud Rate: 115200
- Data Bits: 8
- Parity: none
- Stop Bits: 1
- Flow Control: none
- DB9 DCE
 ➢ A straight cable is needed to connect to a PC (not a null-modem).

ASCII API (RS232)
- Baud Rate: 9600
- Data Bits: 8
- Parity: none
- Stop Bits: 1
- Flow Control: XON/XOFF (Software)
- DB9 DCE
 ➢ A straight cable is needed to connect to a PC (not a null-modem).

THE INTERCONNECT MODULE
The Interconnect Module connects the Upper Card Cage to the Lower Card Cage. It is located within the chassis of the TLX640 and contains no active components.

THE FAN TRAY MODULE
The TLX640 uses 3 DC fans located in one modular, hot-swappable fan tray designed for easy replacement without interrupting system functionality. The Fan Tray introduces air into the chassis through air baffles in the front door. This cools the vertically mounted I/O cards, the integrated circuits on the Switch Cards, the backplane and the power supply modules.

The Fan Tray is also equipped with an annunciator port for system alarms which can be configured to trigger an external control system.
The TLX640 Critical Hardware Alarms are Contacts NC, Normally Closed:

Alarm Descriptions for the TLX640

THE INPUT / OUTPUT CARDS

The TLX640 10G contains up to 32 I/O Cards. I/O Cards provide the 1st (ingress) & 3rd (egress) stages of the three stage Clos switch fabric.

The hot-swappable Input/Output (I/O) cards provide in-service expansion capabilities in sets of 20 ports per I/O card, thus allowing re-configuration without interrupting signal processing.

Each I/O card consists of one Transmit (T) and one Receive (R) optic per port. I/O Cards are available with CATX or LC-type fiber connectors and can be assembled with Single-mode or Multi-mode optics (SFP+). Each individual I/O Card lists the ports as 1 through 20 on the TLX640. A blue LED located on each I/O card indicates when power is ON to that card.

PORT NUMBERING

The TLX640 can have a minimum of one I/O Card and a maximum of 32 I/O Cards. Each TLX640 I/O card contains 20 ports, so that when fully configured, the TLX640 will contain 16 I/O cards in the Upper Card Cage and 16 I/O cards in the Lower Card Cage. The 32 I/O cards provide a total of 640 Optical Input/Output connections (SFP+ T/R) described as Ports 1-640. The TLX640 switching matrix connects any port’s optical output (SFP+ T) to any port’s optical input (SFP+ R).

Port numbering begins with the I/O Card in the Lower Card Cage at the bottom of the chassis and moves straight up to the I/O Card directly above it in the Upper Card Cage, starting with the leftmost I/O card. When installing less than the full complement of 32 I/O Cards, cards should be mounted beginning left to right, and bottom to top. Each card slot has a port number designation printed below the card for easy reference. (See diagram, next page.)

Note: The TLX640 supports the VX640’s I/O Cards in order to support the legacy Velocity extenders.
THE DIGITAL CROSSPOINT SWITCH

The Digital Crosspoint Switch is a non-blocking 12Gpbs asynchronous switch that can connect any input to any output of Thinklogical’s TLX, VX and MX Matrix Switches. Video and Data signals are routed in both directions and the data stream is de-multiplexed at the receiver to deliver uncompressed, high resolution video, audio and peripheral data at the end-user’s workstation.
SWITCH CARD MODULES

The TLX640 contains 8 Switch Cards. These 8 Switch Cards provide the mid-stage switch portion of a three-stage Clos switch fabric. (The ingress and egress stages are located on the input output cards. The mid-stage is distributed across the 8 switch cards).

The Switch cards are labeled from right (Card 1) to left (Card 8). These cards contain the cross-point fabric of the switch and they allow 8 possible paths for making connections. *If a Switch Card fails, some connections will not be allowed.* The hot-swappable feature allows for easy replacement of a Switch Card without shutting down the TLX640.

TLX640 FEATURES

Each TLX640 includes the following features:

- Each connection supports 10Gbps/6.25 Gbps with re-clocking input
- Multi-mode fiber, single mode fiber, CATx and hybrid configurations
- Controllable via LAN or serial connection
- Scalable from 20 ports to 640 ports – In and Out for non-blocking matrix switching
- Critical system components are hot-swappable: power supplies, fan trays, control cards, data input/output cards
- Supports multicasting and macros
- SNMP control protocol
- Expected to achieve the same Common Criteria EAL4, TEMPEST SDIP 27 Level B and NATO NIAPC Evaluation Scheme: Green information assurance (IA) accreditations as our VX line of Matrix Switches.
STATUS LEDS

The TLX640 has status LEDs located on the front of the unit. These LEDs give a visual indication (LED on) that the System Power (12V) and the Controller Power (3.3V) in both the Upper and Lower Card Cages is applied.

Warning! KEEP THE DOOR CLOSED WHEN IN USE! The TLX640 Front Door contains airflow baffles that are integral to the unit’s cooling system. Do not leave the front door open or off the chassis for more than a few minutes if the unit is running. Keeping the front door open for an extended period may lead to a malfunction or damage to the TLX640.
TECHNICAL SPECIFICATIONS

| Chassis | Dimensions:
| | **TLX640 Chassis**
| | Rack Size/Width: EIA 19” (482.6 mm)
| | Height: 28 RU- 49” (1244.6 mm)
| | Depth: 16.07” (408.2)
| | Depth with cable management: 20.36” (517.3 mm)
| | Tolerance: ± .039”; .1000 mm)
| | Weight: 132 lbs (59.87 kg)
| | Shipping Weight: 160 lbs (72.57 kg) |
| Ports | 20 x 20 minimum / 640 x 640 maximum |
| Alarm Relay Contacts | Maximum DC: 1A at 30VDC
| | Maximum AC: 0.3A at 125VAC
| | Contact resistance maximum: 100 mΩ |
| Operating Temp and Humidity | 0° to 50°C (32° to 122 °F), 5% to 95% RH, non-condensing |
| Power Requirements | AC Input: 200-240VAC, 7.0a max., 50-60 Hz
	Universal AC Power Supply
Full Power Consumption	~2100 Watts, fully loaded
Per Supply Power Consumption	+12.0V: 99.8A max, +3.3V: 6.0A max
Compliance	Approvals for US, Canada, and European Union
Warranty	1 Year from date of shipment. Extended warranties available.

PRODUCT COMPATIBILITY

The TLX640 is compatible with these Thinklogical® products:

- Single & Multi-Mode TLX 10G KVM and Video Extenders (10G to 10G only)
- Single & Multi-Mode Velocity 6G KVM and Video Extenders (6G to 6G only)
- SDI Xtreme 3G+ Extenders
- Configurator / Hot-Key Manager / System Management Interface
- Standard VX Router ASCII Interface (via RS-232 port or via Network port)
- Standard VX Router IP Address Configuration Procedure
- Standard VX Router SNMP Traps
- VX640 Matrix Switch 6G I/O cards (6G to 6G only)
Section 2: Set-Up & Installation

Contents

When you receive your Thinklogical® TLX640 KVM Matrix Switch, you should find the following items in the quantities specified in your order:

- TLX640 Chassis (includes 4 Power Modules, Fan Tray, Up to 8 Switch Cards, Upper and Lower Interconnect Cards and one or two Controller Cards)
- Power Cord – Qty. 1 per power supply – PWR-000056-R (International connections may differ)
- Product Manual CD
- Product Quick Start Guide
- Chassis Options (Spares):
 - Fail-Over Controller Card
 - Spare Switch Card
 - Spare Fan Tray
 - Spare Power Module
 - Data Input/Output Card, 20 Ports

The TLX640 KVM Matrix Switch ships configured to customer specifications. All physical connections to the product use industry-standard connectors.

Unpacking the TLX640

The TLX640 is designed to be mounted in a standard EIA 19” rack. All physical connections to the product use industry-standard connectors. Non-supplied cables that may be needed are commercially available. All connections are found on the rear of the unit.

BEFORE STARTING ANY PROCEDURE, IT IS RECOMMENDED THAT YOU READ THE INSTRUCTIONS THOROUGHLY!

Step 1 Carefully remove the TLX640 KVM Matrix Switch from its shipping container. Inspect the unit to make certain that no damage occurred during shipment.

Step 2 All of the I/O cards are installed at the factory to meet your specific configuration. Ensure that the I/O cards are properly seated in the unit and that all the SFP modules are sealed with a removable dust plug. All of the I/O cards are held in place by thumb screw retainers.

Note: Ensure that all thumb screws are finger tight so that all the modules are properly held in the chassis.

Step 3 Verify that the four power supplies above the fan tray are secure in the chassis.

Step 4 Verify that the fan tray is fully seated in the chassis and that the thumb screws are secure.

Step 5 When the TLX640 has been inspected and found to be in suitable condition, the installation process can begin.
Connecting to the TLX640

Thinklogical’s line of TLX Extenders come in both fiber-optic cable and CATx cable versions. Thinklogical’s proprietary multiplexing technology combines video, audio and peripheral data on a single data stream for up to 80km over a single fiber or up to 100m over a single CATx cable.

The TLX640 is compatible with the following Thinklogical® products:

- Single & Multi-Mode TLX 10G KVM and Video Extenders (10G to 10G only)
- Single & Multi-Mode Velocity 6G KVM and Video Extenders (6G to 6G only)
- SDI Xtreme 3G+ Extenders
- Configurator / Hot-Key Manager / System Management Interface
- Standard VX Matrix Switch ASCII Interface (via RS-232 port or via Network port)
- Standard VX Matrix Switch IP Address Configuration Procedure
- Standard VX Matrix Switch SNMP Traps
- VX640 Matrix Switch 6G I/O cards (6G to 6G only)

Ethernet Control

If the TLX640 is to be controlled via Ethernet, it will require a static IP address. This value can be set via the DIP switch located on the Interconnect module. See Appendix B, Setting the DIP Switch Instruction Guide (page 36) for detailed instructions on how to access and set the DIP Switch. The factory default setting is 192.168.13.15 (00000000).

![DIP Switch](image)

Example: Switch is set for 192.168.13.43 (01110000).

TLX640 DIP Switch Settings

The simplest network connection is an isolated network with only the TLX640, the control server, and any control clients using static IP addresses. The TLX640 can be set to any of the above settings. The control server must be at 192.168.13.9, and the control clients could then be set to any other addresses in the 192.168.13.X family.

If static IP addresses for the control server and its clients are not possible, then the control server will require two (2) network interfaces with one interface set to the static address 192.168.13.9 and dedicated to the TLX640 KVM Matrix Switch(s) while the other network interface can be configured as required by the facility's network administrator.
External Control CPU Minimum Requirements

The External Control CPU must meet the following minimum requirements (including requirements for using Thinklogical’s System Management Portfolio):

- **System Management Interface** package requires Debian or Ubuntu 32 or 64 bit.
- **Configurator** and **Hot Key Manager** run on Linux (RedHat 32 & 64 bit, Debian 32 & 64 bit or Windows XP, 7, and 8).
- **RAM** (minimum): Linux: 1GB Windows: 4GB OSX: 4GB
- **VIDEO**: Works with all video adapters. (Not required if the computer is used as a headless server.)
- **KEYBOARD/MOUSE**: Works with any keyboard/mouse/touchpad. (Not required if the computer is used as a headless server.)
- **NETWORK**: One port minimum, although two ports are recommended for security considerations.
- **DISK SPACE**: Thinklogical programs typically use less than 40 MB.
- **SERIAL PORT**: 1 optional RS-232 serial port (Crestron/AMX serial access)

A Secondary (sometimes called a Back-Up) Controller Card is optional to ensure uninterrupted functionality if the Primary Controller Card fails or needs to be replaced. The Primary Controller Card should always be in the upper controller slot. The Secondary Controller must have a LAN connection that allows it to communicate with both the Primary Controller and a server with the IP address 192.168.13.9. Without this interface, the Secondary Controller cannot take control of the switch.

Pluggable SFP+ Modules

Each Input and Output card contains rows of SFP+ modules that serve as the fiber-optic couplers for the fiber cables to and from the Thinklogical transmitter and receiver extenders. Individual cards can be removed for easy access to the SFP+ modules.

The SFP+ Optical Module is a 10Gb Short-Wavelength Transceiver designed for use in bi-directional Fiber Optic Channel links. The modules are hot-pluggable and operate on 3.3VDC.

Always use **dust caps** to protect against dust and damage when a fiber optic connector is not attached to its coupling device (fiber optic equipment, bulkheads, etc.). All Thinklogical SFPs are fully populated with dust plugs upon shipment.

Note: It is good practice to immediately install dust plugs in unused SFP modules and on the ferrules of unconnected fiber-optic cables.
Each TLX640 I/O card has 20 SFP+ Modules, each mounted within a grounded metal enclosure. Each SFP is locked into its enclosure with a built-in latch handle that can be opened for removal or locked for installation (right). The latch handle spans the two LC ports. Arrows printed on the handle indicate which port is an INPUT (▲) and which is an OUTPUT (▼).

Fiber Optic Cable

Installing Fiber Optic Cable: The TLX640 switching matrix connects any SFP’s optical output port (Transmit) to any other SFP’s optical input port (Receive).

Requirements: Thinklogical recommends SX+ Laser Enhanced (50µm) fiber for your TLX640 KVM Matrix Switch and Velocity Extension System. Multi-mode OM4 fiber can extend up to a maximum of 400m and Single-mode fiber can extend up to 80km.

Handling Fiber Optic Cable: Unlike copper cabling, fiber optic cable requires special handling. A small speck of dust or a scratch to the ferrule tip (the end of the connector) can attenuate the optical signal, rendering the cable inoperable.

Warning! The ends of the connectors (the ferrule) should never come in contact with any foreign object, including fingertips. Always install a dust cap immediately on the ferrule of any unused fiber to protect the tip.

Warning! Minimum bend diameter must be no less than 3”. Be careful not to kink or pinch the fiber when using ties.
TLX Extender Fiber-Optic Cable Configurations

SINGLE VIDEO MODULES

DUAL VIDEO MODULES

Note: On Dual Video models, SFPs 1 & 2 are Video 1 and SFPs 3 & 4 are Video 2.
TLX Extender CATx Cable Configurations

There are currently several versions of CATx (category 5/5a/6/6a/etc.) cables on the market. **Thinklogical recommends using a minimum of CAT6 for your TLX640 KVM Matrix Switch and Extension System.** All cables CAT6 or higher can extend up to a maximum of 100m.

SINGLE VIDEO

CATx Configuration, Single Video/KVM Extension, 4096x2160 @ 30Hz

![Single Video Configuration Diagram]

Up to 100m

DUAL VIDEO

CATx Configuration, Dual Video/KVM Extension, 4096x2160 @ 30Hz

![Dual Video Configuration Diagram]

Up to 100m

Note: On Dual Video models, Ports 1 & 2 are Video 1 and Ports 3 & 4 are Video 2.
Input / Output Cards

The hot-swappable Input/Output (I/O) Cards provide excellent in-service expansion capabilities in convenient sets of 20 ports per card, allowing re-configuration without interrupting signal processing. The TLX640 will support up to 32 Input/Output Cards.

Each I/O card consists of one Transmit (T) and one Receive (R) optic per port. I/O Cards are available with LC-type fiber connectors and can be assembled with Single-mode or Multi-mode optics (SFP+). Each individual TLX640 I/O Card numbers the ports 1 through 20. An LED located on each card indicates when power is applied to that card.

Input/Output Port Numbering on the TLX640

At the bottom of the Lower Cage and at the bottom of the Upper Cage, the port numbers for each slot are listed (all numbering is bottom to top, left to right).

The TLX640 configuration can have a minimum of one I/O Card (20 x 20) and a maximum of 32 I/O Cards. Each TLX640 I/O card contains 20 ports. When fully configured, the TLX640 contains 16 I/O cards in the Upper Card Cage and 16 I/O cards in the Lower Card Cage. The 32 I/O cards provide a total of 640 Optical Input/Output connections described as Ports 1-640.
Routing Thinklogical Extenders through the TLX640

Comprised of a fiber-in, fiber-out matrix switch and fiber-optic KVM Transmitter and Receiver Extenders, this complete system provides transparent and secure routing, switching and extension of video and high-speed data peripherals to remote destinations with ease.

Connecting to the Receiver

The Velocity Receiver serves as the Destination (desktops, theaters, conference rooms, editing suites, control consoles, video walls, etc). Depending on your configuration, your KMASS devices (audio, keyboard, mouse, etc.) are connected to the Receiver first, using standard cables. Power can then be applied to the unit. The Receiver then connects to the TLX640 Receiver ports using fiber (Multi-mode fiber for distances up to 400m; Single-mode fiber for distances beyond 80km).

Connecting to the Transmitter

The Transmitter serves as the Source (computer and video entities). If the source includes a workstation, depending on your configuration, your local KMASS devices (audio, keyboard, mouse, etc.) should be connected first. The video sources (e.g. computers, tape decks, etc.) are connected next, followed by any local video devices. Power can then be applied to the unit. The Transmitter connects to the TLX640 Transmitter ports using fiber (Multi-mode fiber for distances up to 400m; Single-mode fiber for distances beyond 80km).
Connecting to a Control CPU

The TLX640 is controlled via a dedicated external Control CPU. This allows for customization as well as ease of control and administration. Access is provided via a network connection or serial RS-232.

⚠️ **Note:** The Control CPU (Computer) is supplied separately.

The network and serial RS-232 connection both use the same low level ASCII API syntax. This command syntax is defined in the document: `Router_ASCII_API.pdf`. Each line contains only one command and must end with a carriage return (CR) and line feed (LF), or just a line feed (LF). The characters are not echoed.

The serial port is configured for 9600 baud, 1 stop bit, no parity, and no flow control. The network interface listens on TCP (Transmission Control Protocol) port 17567. It accepts the same commands as the serial interface. You may use telnet to manually open a connection and control the TLX640 using port 17567.

Third-party controllers will control the matrix switch by connecting to either the serial or network port. Using the network is the only means to take advantage of our automatic fail over facility.

Thinklogical offers a web-based control program called ‘Configurator’. This program is described in greater detail in the document: `Manual_System_Management_Protfolio_Rev_A.pdf`, available on the Thinklogical web site.
Linux Command Console (Console)

- Baud Rate: 115200
- Data Bits: 8
- Parity: none
- Stop Bits: 1
- Flow Control: none
- DB9 DCE
 - A straight (NOT a null-modem) cable is needed to connect to a PC.

ASCII API (RS-232) Settings

- Baud Rate: 9600
- Data Bits: 8
- Parity: none
- Stop Bits: 1
- Flow Control: XON/XOFF (Software)
- DB9 DCE
 - A straight (NOT a null-modem) cable is needed to connect to a PC

Firmware

On Screen Display (OSD) - Firmware Option

The Configurator can be accessed and controlled via an OSD (On-Screen Display) technology. The Configurator software can be installed on a designated out-of-band (OOB) PC which users can access from a workstation. A preconfigured hot-key sequence will deliver the Configurator GUI straight to the user’s desktop monitor. The user can then select the defined sources and destinations that they wish to connect. While a user is making the connections, they have exclusive use of the OOB PC. Once they have completed their connections, the OOB PC becomes available for the next user. The OOB PC that has the Configurator loaded on it has a built-in timeout function, therefore the PC should not be taken out of service for an extended period of time. The timeouts can be set in increments of one second. Typical timeouts are in the order of 10 seconds.

Updates

Firmware updates are available through Thinklogical®. For technical assistance, please call us at 1-203-647-8700.

Order of Installation Events

Please refer to the Quick Start Guide included with your products for detailed instructions. The TLX640 Quick Start Guide is also available in Appendix A (page 35).

Safely Remove an Active Control Card or Shut Down the System

During normal, non-maintenance operation, the Primary Control Card should always be the Active controller for the system. However, there may be times when other conditions temporarily exist, such as during maintenance, updates, repairs, etc. Although the system will run normally on the Secondary (or Back-up) Control Card, not having a second card eliminates the fail-over protection afforded by a redundant, two-card system. The following commands allow the safe removal of a Control Card and the switch of activity from one Control Card to the other without interruption of connections.
Note: During normal operation, the Primary Control Card should always be the active controller for the system.

During normal operation the Primary or Secondary Controller can be managed via the console port or over an SSH connection.

The HALT Command

- Typing `halt` at the command line will perform an orderly shut-down of the active Control Card.
- Once the Control Card is inactive, it will stop signaling the other Control Card. This prompts the other card to become active. This will take only a few seconds.
- Remove any cables (LAN, RS-232, Console, etc.) from the inactive card. It can now be safely removed from the chassis.
- At this point, the system is now running on the Secondary Control Card.

Note: Re-inserting the Primary Control Card restores the system back to running on the Primary Control Card. Insure that the LAN connection to the card is restored promptly.

The PWROFF Command

- Typing `pwroff` at the command line prompt, from either the Primary or the Secondary Control Card, will halt BOTH Control Cards and turn off the power to all the I/O card slots in the system except the controllers.

Note: I/O card slot power will be turned off on the TLX640.

- Remove the AC power cord(s) from the Matrix Switch or from the AC source for a complete system shut-down.
- Remove any cables (LAN, RS-232, Console, etc.) from the Control Cards.
- The Control Cards can now be removed, swapped or replaced as needed.

Upon turn-on, the Control Card in the top or the left slot will become Primary and the Card in either the bottom or the right slot will be the Secondary back-up.

How to Install and Replace Modules

How to Install or Replace an Input / Output Card

Note: No shutdown is required prior to installing/replacing Input/Output Cards.

Step 1 Turn the card’s two thumbscrews counterclockwise until they disengage from the chassis. Pull the card straight out using both handles.

Warning! Do not pull on the thumbscrews when removing the module – damage may occur! Use the handles!

Step 2 Place the new module upright so that the POWER LED is on the top. Grasp the module by the handles. The card should slide freely until it reaches the backplane connector. At this point, use just enough force to firmly engage the card with the mating connector.

Warning! If the module does not slide into the connector, do not force it! Damage may occur. Remove the card and start over.

Step 3 Once the module is completely seated, hand-tighten the thumbscrews.
Warning! Do not tighten the thumbscrews with a screwdriver.

How to Install or Replace an Interconnect Module

Note: Replacing the Interconnect Module will interrupt service.

To replace the Interconnect Module, the front door and front panel must first be removed. (See Appendix B, page 36.)

Step 1 Turn both front door latches one quarter turn clockwise (arrow on knob pointing up) to release the door.

Step 2 While holding the door steady with one hand, pull down the upper spring-loaded hinge release and pull the upper portion of the door outward until the latch clears the mounting hole. The door can now be removed and set aside.

WARNING! KEEP THE DOOR CLOSED WHEN IN USE! The TLX640 Front Door contains air-flow baffles that are integral to the unit’s cooling system. Do not leave the front door off the chassis for an extended length of time if the unit is running. Keeping the front door open for an extended period of time may lead to a malfunction of the TLX640.

Step 3 There are two thumb screws holding the front panel to the chassis. Loosen the thumb screws, remove the front panel and set it aside.

Step 4 There are two thumbscrews on the Interconnect Module; turn the thumbscrews counterclockwise until they disengage from the chassis. Pull the Interconnect Module out using both black ejector handles (red arrows, right).

Step 5 Place the new module upright so that the four Status LEDs are at the bottom. Grasp the module by the handles. The card should slide in freely until it reaches the backplane connector. At this point, use just enough force to firmly engage the card with the mating connector.

WARNING! If the module does not slide easily into the connector, do not force it! Damage may occur. Remove the card and start over.

Step 6 Once the module is completely seated, hand-tighten the thumbscrews.

WARNING! Do not tighten the thumbscrews with a screwdriver.

Step 7 Replace the front panel that was removed in Step 3.

Step 8 Replace the front door that was removed in Steps 1 and 2.

How to Install or Replace a Switch Card

Note: The Switch Cards are hot-swappable; the TLX640 system does not need to be shutdown to replace.

Step 1 Turn the thumbscrews counterclockwise until they disengage from the chassis. Pull the Switch Card straight out using both black ejector handles.

Step 2 Place the new module upright so that the integrated circuitry/components are on the right side of the card. Grasp the module by the handles or by the outer edge of the aluminum housing. The card should slide freely until it reaches the backplane connector. At this point, use just enough force to firmly engage the card with the mating connector.
Warning! If the module does not slide into the connector, do not force it! Damage may occur. Remove the card and start over.

Step 3 Once the module is completely seated, hand-tighten the thumb-screws.

Warning! Do not tighten the thumb-screws with a screwdriver.

How to Install or Replace a Controller Card

Note: When using a single Controller, the top Controller slot is always Primary. Replacing the Controller Card will interrupt service if a Secondary (Back-up) Controller Card is not installed.

Step 1 Turn the thumbscrews counterclockwise until they disengage from the chassis. Pull the Controller Card straight out using both black handles.

Step 2 Place the new module upright so that the ACTIVE LED is on the top. Grasp the module by the handles or by the outer edge of the aluminum housing. The card should slide freely until it reaches the backplane connector. At this point, use just enough force to firmly engage the card with the mating connector.

Warning! If the module does not slide into the connector, do not force it! Damage may occur. Remove the card and start over.

Step 3 Once the module is completely seated, hand-tighten the thumb-screws.

Warning! Do not tighten the thumb-screws with a screwdriver.

How to Replace a Fan Tray

The TLX640 uses three DC fans to move air horizontally through the enclosure. Be sure to not block the air vents on the front and rear of the unit, and leave at least 2” of space on both sides.

Note: Leave adequate ventilation space on both sides of the units (2” minimum), especially if units (e.g. Extenders) are being stacked above or below the TLX640 KVM Matrix Switch.

Note: No shutdown is required prior to replacing the Fan Tray.

Step 1 Turn the four thumbscrews counterclockwise until they disengage from the chassis.

Step 2 Pull the Fan Tray module straight out using both handles.

Step 3 Place the new module so that the aluminum housing is on the bottom. Hold the new Fan Tray by the black handles and slide the aluminum housing into the black card guides.

Warning! Do not operate the unit without a Fan Tray installed.

Step 4 Hand-tighten the thumbscrews.

Warning! Do not tighten the thumb-screws with a screwdriver.
How to Replace a Power Supply

Warning! Disconnect the power cord before proceeding!

Note: If only **TWO** primary power supplies (1 & 3) are installed, shutdown **IS** required. If **TWO** primary power supplies (1 & 3) **AND** **TWO** back-up power supplies (2 & 4) are installed, shutdown **IS NOT** required.

The Power Modules are universal input 180-264VAC (1200 W) 50-60Hz. Use the proper power cord for your region (supplied with the unit).
Although the TLX640 functions properly with two Primary Power Modules, it is recommended that all four Modules (two Primary, two Back-up) be connected to two independent power sources (for redundancy).

Step 1 Grasp the handle with one hand.
Step 2 Slide the green tab to the left with the other hand.
Step 3 Pull the Power Module straight out of the chassis.
Step 4 Insert the new Power Module into the chassis and slide it in until it reaches the backplane connector. The module should slide freely until it reaches the backplane connector. At this point, use just enough force to firmly engage the card with the mating connector. Ensure the locking mechanism snaps closed.

Warning! If the module does not slide easily into the connector, do not force it! Damage may occur. Remove the module and start over.

Ordering Information

Part numbers of the various components of the TLX640 Matrix Switch are as follows:

TLX 640 MATRIX SWITCH
TLX-MSC-000640 – TLX640 Chassis, configurable with up to 32 Data Input/Output Cards

TLX 640 MATRIX SWITCH DATA INPUT/OUTPUT MODULES
TLX-MSD-M00020 – TLX640 Data Input/Output Card, 20 Multi-Mode Fiber Ports
TLX-MSD-S00020 – TLX640 Data Input/Output Card, 20 Single-Mode Fiber Ports, 10km
TLX-MSD-000020 – TLX640 Data Input/Output Card, unpopulated

TLX 640 MATRIX SWITCH SPARE MODULES
TLX-MSM-C00640 – TLX640 Controller Card
TLX-MSM-S00640 – TLX640 Switch Card
TLX-MSM-F00640 – TLX640 Fan Tray
TLX-MSM-P00640 – TLX640 Power Supply
Section 3: Regulatory & Safety Requirements

Symbols found on the product
Markings and labels on the product follow industry-standard conventions. Regulatory markings found on the products comply with domestic and many international requirements.

Regulatory Compliance
Thinklogical’s® products are designed and made in the U.S.A. These products have been tested by a certified testing laboratory and found to be compliant with the following standards (both domestic USA and many international locations):

North America

- **Safety**
 - ANSI/UL 60950-1:2007/03/27 Ed:2 Rev:2011/12/19
 - CSA C22.2#60950-1: 2007/03/27 Ed: 2 (R2012)
- **LASER Safety**
 - CDRH 21 CFR 1040.10
 - Class 1 LASER Product
 - Canadian Radiation Emitting Devices Act, REDR C1370
 - IEC 60825:2001 Parts 1 and 2
 - Class 1 LASER Product

Australia & New Zealand
This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

European Union

- **Declaration of Conformity**
 - Manufacturer’s Name & Address: Thinklogical, A BELDEN BRAND
 - 100 Washington Street
 - Milford, Connecticut 06460 USA

Thinklogical’s products comply with the requirements of the Low Voltage Directive 2006/95/EC, the EMC Directive 2004/108/EC, the RoHS Directive 2011/65/EU, the WEEE Directive 2012/19/EU and carry the CE marking accordingly.

Standards with Which Our Products Comply

- **Safety**

- **Electromagnetic Emissions**
 - CENELEC EN 55022:2010 +AC:2011

- **Electromagnetic Immunity**
 - CENELEC EN 55032:2015
 - EN61000-3-2/: 2000 Harmonics
 - EN61000-3-3: 2008 Flicker
EN 61000-4-2:2009 Electro-Static Discharge Test
EN 61000-4-4:2004 Electrical Fast Transient Test
EN 61000-4-5:2006 Power Supply Surge Test
EN 61000-4-6:2009 Conducted Immunity Test
EN 61000-4-11: 2004 Voltage Dips & Interrupts Test

Supplementary Information

The following statements may be appropriate for certain geographical regions and might not apply to your location.

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigencies du Règlement sur le matériel brouilleur du Canada.

Warning! This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take corrective measures.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications in which case the user may be required to take adequate corrective measures at their own expense.

Note: This Class A digital apparatus complies with Canadian ICES-003 and has been verified as being compliant within the Class A limits of the FCC Radio Frequency Device Rules (FCC Title 47, Part 15, Subpart B CLASS A), measured to CISPR 22: 1993 limits and methods of measurement of Radio Disturbance Characteristics of Information Technology Equipment.

Note: The user may notice degraded audio performance in the presence of electro-magnetic fields.

Product Serial Number

Thinklogical products have a unique serial number, which includes a date-code, printed on an adhesive label that is affixed to the unit. The format for the date-code is 2 digits for the month, dash, 2 digits for the year, plus at least four digits for a unique unit number. For example: 04-170129 indicates the unit was built in the 4th month of 2017, and is unit number 129.

Connection to the Product

Connections and installation hardware for our products use industry-standard devices and methods. All wiring connections to the customer equipment are designed to minimize proprietary or customized connectors and cabling. Power connections are made with regionally appropriate power cords and approved methods.
Section 4: Thinklogical Support

How to Contact Us

Customer Support

Thinklogical® is an engineering company and you will receive the information you require directly from our most knowledgeable engineers.

We believe that the first line of support comes from the design engineers that developed each particular product.

Therefore, your questions or issues will be handled promptly by our in-house engineers who are most familiar with your products.

Thank you for choosing Thinklogical® products for your application.

We appreciate your business and are dedicated to helping you successfully use our products.

Thinklogical® is always here to help you.

To contact us, please use the following telephone numbers and internet-based methods:

Website

Check out our website for current product offerings, support information and general information about all of the products we offer.

Our internet website offers product information on all current systems, including technical specification sheets and installation guides (for viewing online or for download), product diagrams showing physical connections and other information you might need.

Internet: www.thinklogical.com

Note: Most online documents are stored as Adobe Acrobat “PDF” files. If you do not have the Adobe Acrobat reader needed to view PDF files, visit www.adobe.com for a download.

Email

Thinklogical® is staffed Monday through Friday from 8:30am to 5:00pm, Eastern Time Zone. We will do our best to respond to your email inquiries promptly. Please use the following email addresses:

- info@thinklogical.com – Information on Thinklogical® and our products.
- sales@thinklogical.com – Sales Department - orders, questions or issues.
- support@thinklogical.com – Product support, technical issues or questions, product repairs and request for Return Authorization.
Telephone

Thinklogical Operator: 1-203-647-8700
US Commercial & Canada Sales: 1-203-647-8715
Toll Free in the Continental US: 1-800-291-3211
International Sales (Europe, Middle East, Africa): 1-203-647-8704
International Sales (Asia Pacific, Central & Latin America): 1-203-647-8734

Please contact our expert sales staff in Milford, CT. We are here Monday through Friday from 8:30am to 5:00pm, Eastern Time Zone. We'll provide a representative’s direct dial phone number when you call.

If leaving a voice message, please provide a preferred time to call back so we may reach you at your convenience.

Our switchboard attendant will direct your call during regular business hours. We have an automated attendant answering our main telephone switchboard after regular business hours and holidays. You can leave voice messages for individuals at any time.

Fax

Our company facsimile number is 1-203-783-9949. Please indicate the nature of the fax on your cover sheet and provide return contact information.

Product Support

Thinklogical’s® support personnel are available Monday through Friday from 8:30am to 5:00pm, Eastern Time Zone. If your application requires assistance at some time outside of our normal business hours, please contact us beforehand and we will do our best to make arrangements to help you with your Thinklogical® products.

Warranty

Thinklogical® warrants this product against defects in materials and workmanship for a period of one year from the date of delivery. Thinklogical® and its suppliers disclaim any and all other warranties.

Note: Thinklogical® products carry a one year warranty, with longer term available at time of purchase on most products. Please refer to your product invoice for your products Warranty Terms & Conditions.

Defect remedy shall be the repair or replacement of the product, provided that the defective product is returned to the authorized dealer within a year from the date of delivery.

If you wish to return your device, contact the Thinklogical® authorized dealer where you purchased the device, or if you purchased directly, call Thinklogical® at 1-800-291-3211 (USA).
Return Authorization

If you need to return your Thinklogical® product to us for any reason, please get a Return Merchandise Authorization Number (RMA#) from Thinklogical’s Product Support Department (1-203-647-8798) before sending the unit in.

In the event you must return a product to Thinklogical® directly, please contact Customer Support at 1-800-291-3211 or 1-203-647-8798. Customer Support will ask you to describe the problem and will issue you a Return Merchandise Authorization number (RMA#). Pack the device in its original box, if possible, and return it with the RMA# printed on the outside of the box.

⚠️ Note: DO NOT return a product to Thinklogical® without a Return Merchandise Authorization.

Our Addresses

If you have any product issues or questions or need technical assistance with your Thinklogical® system, please call us at 1-800-291-3211 (USA only) or 1-203-647-8798 and let us help. If you need to write us or return a product, please use the following address: Return address for products with Return Merchandise Authorization:

Thinklogical, A BELDEN BRAND
Attn: RMA#
100 Washington Street
Milford, CT 06460 USA

Website: www.thinklogical.com
Facebook: www.facebook.com/ThinklogicalUSA
LinkedIn: www.linkedin.com/company/thinklogical
Google+: http://plus.google.com/u/0/109273605590791763795/about
YouTube: www.youtube.com/user/thinklogicalNA
Twitter: @thinklogical
APPENDIX A: TLX640 QUICK START GUIDE

As used with Thinklogical’s Q-Series and TLX-Series Video Extension Systems

Thinklogical’s TLX640 10G Matrix Switch features redundant Power Supplies and Controller Modules for uninterrupted performance, even during system reconfiguration, updates or setup. The TLX649 remains fully functional with only one Power Supply installed even with one Controller activated.

NOTE: When using a single Controller, the upper module (Primary) must be used.

1. Connect the TLX and Q-Series Receivers to the TLX649 using multi-mode fiber-optic cables (up to 400 meters). On the Router, connect fiber L1 to any SFP’s Receive Port and fiber L2 to the same SFP’s Transmit Port. Connect fiber L3 to any other SFP’s Receive Port. Connect fiber T1 to any other SFP’s Receive Port and fiber T2 to any other SFP’s Transmit Port.

2. The Chassis Power Supply switch on the front panel are in the OFF position. Install the Right Power Supply Module AC Power Cord (left receptacle) and the Left Power Supply Module AC Power Cord (right receptacle) onto the Transmitter chassis. Plug both cords into a standard AC source. On the front of the chassis, turn ON the Right and Left Power Supply Modules.

3. Connect the peripheral devices (monitor, audio, USB, etc.) to the Receivers using standard copper cables as shown in the examples below. Turn all the devices ON.

4. Connect the RS232/RS422/485 cables from the Source CPU to the RS232/RS422/485 ports of each VGM-1G+ or VGM-1G+ Module. Connect the 10GBase T (1000Base-T) Ethernet cable from the Source CPU to the 10GBase T (1000Base-T) Ethernet port of each VGM-1G+ or VGM-1G+ Module.

5. Connect USB 3.0 cables from the Source CPU to the USB 3.0 ports of each VGM-1G+ or VGM-1G+ Module.

6. Connect HDMI cables from the Source CPU to the HDMI ports of each VGM-1G+ or VGM-1G+ Module.

7. Connect the peripheral devices (monitor, audio, USB, etc.) to the Receivers using standard copper cables as shown in the examples below. Turn all the devices ON.

8. Connect the L1/L2/L3/T1/T2 power cords to the L1/L2/L3/T1/T2 power ports of the TLX649.

STEP 4: Connect the TLX640 to the Matrix Switch using multi-mode fiber-optic cables (up to 400 meters). Connect fiber L1 to any SFP’s Receive Port and fiber L2 to the same SFP’s Transmit Port. Connect fiber L3 to any other SFP’s Receive Port. Connect fiber T1 to any other SFP’s Receive Port and fiber T2 to any other SFP’s Transmit Port.

STEP 5: Ensure the Chassis Power Supply switches on the front panel are in the OFF position. Install the Right Power Supply Module AC Power Cord (left receptacle) and the Left Power Supply Module AC Power Cord (right receptacle) onto the Transmitter chassis. Plug both cords into a standard AC source. On the front of the chassis, turn ON the Right and Left Power Supply Modules.

STEP 6: Connect the RS232/RS422/485 cables from the Source CPU to the RS232/RS422/485 ports of each VGM-1G+ or VGM-1G+ Module. Connect the 10GBase T (1000Base-T) Ethernet cable from the Source CPU to the 10GBase T (1000Base-T) Ethernet port of each VGM-1G+ or VGM-1G+ Module. Connect the USB 3.0 cables from the Source CPU to the USB 3.0 ports of each VGM-1G+ or VGM-1G+ Module. Connect the HDMI cables from the Source CPU to the HDMI ports of each VGM-1G+ or VGM-1G+ Module. Connect the peripheral devices (monitor, audio, USB, etc.) to the Receivers using standard copper cables as shown in the examples below. Turn all the devices ON.

STEP 7: Connect the 10GBase T (1000Base-T) Ethernet cable from the Source CPU to the 10GBase T (1000Base-T) Ethernet port of each VGM-1G+ or VGM-1G+ Module. Connect the USB 3.0 cables from the Source CPU to the USB 3.0 ports of each VGM-1G+ or VGM-1G+ Module. Connect the HDMI cables from the Source CPU to the HDMI ports of each VGM-1G+ or VGM-1G+ Module. Connect the peripheral devices (monitor, audio, USB, etc.) to the Receivers using standard copper cables as shown in the examples below. Turn all the devices ON.

STEP 8: Connect the power supplies. Left to Right 1Upper Card Cage Primary 2Upper Card Cage Secondary 3Lower Card Cage Primary 4Lower Card Cage Secondary.
To set the TLX640 DIP Switch, the front door and front panel must first be removed.

STEP 1: Turn both front door latches one quarter turn clockwise (arrow pointing up) to release the door.

STEP 2: Holding the door steady with one hand, pull down the upper spring-loaded hinge release and pull the upper portion of the door outward until the latch clears the mounting hole. The door can now be removed and set aside.*

STEP 3: There are two thumb screws holding the front panel to the chassis. Loosen the thumb screws, remove the front panel and set it aside. The DIP Switch will now be exposed.

STEP 4: Using the chart on the right, set the 8 DIP switches to the desired settings and reinstall the front panel that was removed in Step 3.

STEP 5: When reinstalling the door, insert the lower hinge first, then, while pulling down the upper hinge spring-release, guide the door into place and allow the upper hinge to insert itself into the mounting hole. Turn the door latches (see Step 1) one quarter turn counter-clockwise to secure the door closed.

*The TLX640 Front Door contains air-flow baffles that are integral to the router’s cooling system. Do not leave the front door off the chassis for an extended length of time if the unit is running.
Appendix C: FPGA Program Code Update Procedure

Perform steps 1-8 as described:

1. **STEP 1: FPGA Update Preparation:**
 Please contact your thinklogical Sales Representative or Customer Service (1-203-647-8700) for access to the FPGA Download Update application.

2. **STEP 2:** Save the FPGA program code update file provided by Thinklogical to a known location on the PC. The program code update file will have a file extension of “.lib.” This is the file that will be retrieved in Step 6.

3. **STEP 3:** Connect a USB A to USB mini-B cable between the TLX640 Controller Card’s PGM UPGRADE port and the CPU as shown below.

4. **STEP 4:** Run the Thinklogical FPGA Upgrade application. You will see the following window. Click on Identify Product.

5. **STEP 5:** You may see a window similar to this, identifying the desired file name. Click Open File.

6. **STEP 6:** Select OK. A dialog box similar to this will open.

7. **STEP 7:** Verify the response below during the process. The spinning bar to the left of the progress bar will stop when the download is complete.

8. **STEP 8:** When FPGA download is complete, you will see the window below. The Upgrade Procedure is now complete. Remove the USB cable from the PGM Update Port and exit the application.

Browse to and select the file: tlx640_ctrl_fpga.lib (This is the file saved in Step 2.) and press OPEN to begin.
APPENDIX D: Secure Applications

Note: CATx Matrix Switching applications do not offer an EAL4 rated level of security.

TLX Matrix Switch Control
When used in a secure application, the Matrix Switch and External Computer (server) used to manage the system must be located in a physically secure environment to which only trusted administrators have access. Similarly, the server used to manage the Matrix Switch must be physically protected and have suitable identification/authentication mechanisms to ensure that only trusted administrators have access.

Thinklogical’s TLX, VX and MX Matrix Switches use two methods for secure routing. One is known as Restricted Switching and the other is known as Partitioning. These methods can be deployed singularly or jointly, depending on security requirements.
Restricted Switching

Restricted Switching provides multiple levels of security classification domains on the same Matrix Switch. Each destination must ensure that no unauthorized content is displayed or accessed, therefore, every input and output needs to be prioritized. Priorities can range from 1 to the total number of ports in the Matrix Switch. An output can connect to an input with a priority greater than, or equal to, its own. Thus, a priority level of 1 on an output can connect to any input (priority 1, 2, 3…).

The user must provide a table defining the priorities for each input and output of the switch matrix. This table is in the form of a comma separated value (csv) file. This file contains the values in three columns: **Port Direction** (i=input, o=output), **Port Number** and **Port Priority**. For example:

<table>
<thead>
<tr>
<th>I/O</th>
<th>Number</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>"i",</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>"i",</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>"i",</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>"i",</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>"i",</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>"o",</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>"o",</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>"o",</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>"o",</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>"o",</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Output 1 can connect to ports 1-5.
Output 2 can connect to ports 3 and 5.
Output 3 can connect to ports 2, 3, and 5.
Output 4 cannot connect to any ports.
Output 5 can connect to ports 1-5.

Note that Port Direction (i or o) is in quotes and that the table must use only the following ASCII printable characters:

- Double quotes (or speech marks) character code = 34 ("")
- Lower case i character code = 105 (i)
- Lower case o character code = 111 (o)
- Comma character code = 44 (,)
- Carriage Return character code = 13 (CR)
- Line Feed character code = 10 (LF)

The Restricted Switching Table files are stored on the control card at:

```
/var/local/router/restrict/upstream.csv
```

At system power up, after initial boot-up, the Primary Control Card will only evaluate its Restricted Switching Table (upstream.csv file) once upon becoming active. The Secondary Control Card will NOT evaluate its Restricted Switching Table (upstream.csv file) at initial boot-up but rather when a switchover occurs from Primary to Secondary Active. If an `upstream.csv` file is found, a log entry to the `daemon.log` file will be made indicating “Restricted Switching ENABLED”. If no file is found, then a log entry of “Restricted Switching DISABLED” is made.

Note: The inactive Secondary Control Card will not verify its Restricted Switching Table (csv file) and, as a result, will not log error messages with current time stamp entries until it becomes active.

Also, any errors that occur during the Restricted Switching Table evaluation process will be logged as “error” with a field and line invalid identifier. The `daemon.log` file will be at the following location on the control card: `/var/log/daemon.log`.

Note: For access to the `daemon.log` file via SSH, refer to “THE NETWORK INTERFACES” section of this manual (page 8) for correct IP addresses of control cards when in Primary Active or Secondary Active mode.
To verify the **system restrict policy**, Thinklogical recommends the following:

1) Review the `daemon.log` file on the active Control Card and correct any errors in the Restricted Switching Table before implementing multiple levels of security classification domains on the same Matrix Switch.

2) Fully test the **Restricted Switching** on the active Primary Control Card before implementing multiple levels of security classification domains on the same Matrix Switch.

3) In a redundant system, make the Secondary Control Card active by disconnecting the LAN cable from the Primary Control Card’s LAN port. The Secondary Control Card, upon becoming active, will evaluate its Restricted Switching Table. Check the `daemon.log` file on the Secondary Control Card for any errors in the Restricted Switching Table and correct them before implementing multiple levels of security classification domains on the same Matrix Switch using the Secondary Control Card.

4) Fully test the Secondary Control Card’s **Restricted Switching** before implementing multiple levels of security classification domains on the same Matrix Switch.

There are cases where updates to the Restricted Switching Table must be made in an active system. When an update is made to the table, the Controller will not evaluate the updated table until the following procedures are followed:

When updates are made to the Restricted Switching Table in a **non-redundant system**, Thinklogical recommends the following **(This procedure will be disruptive to system connections)**:

1) Update the Restricted Switching Table of the Primary Control Card.

2) Take the Primary Control Card out of service by following guidelines in the “Safely Remove an Active Control Card” section of this document (page 25).

When updates are made to the Restricted Switching Table in a **redundant system**, Thinklogical recommends the following **(This procedure will NOT be disruptive to system connections)**:

1) Update the Restricted Switching Table of the inactive Secondary Control Card.

2) Take the Primary Control Card out of service by following guidelines in the “Safely Remove an Active Control Card” section of this document (page 25). This will cause the Secondary Control Card to become active and evaluate its Restricted Switching Table.

3) Update the Restricted Switching Table of the inactive Primary Control Card with the same table used for the Secondary Control Card.

4) Extract and re-insert the Primary Control Card back into the chassis to cause the system to make the Primary Control Card the active controller and begin using the updated Restricted Switching Table. Insure that the LAN connection to the Primary Control Card is restored promptly.

Note: When using a Back-up Controller configuration, both controllers must have the same Restricted Switching Table file(s) to maintain the security of the system.

Restricted switching is disabled when Restricted Switching Table files are removed. By default, when there are no Restricted Switching Table files, all input and output ports will have a priority of 1. All Switches are shipped without Restricted Switching Table files stored on the Control Card and therefore do not restrict any connection.
Restricted Switching with TLX, VX and MX Matrix Switches

Restricted Switching Priority Scheme

The following example shows a priority scheme for four levels of security managed by one TLX Matrix Switch:

VIDEO:

Destination Workstation Network:
- RED
- BLUE
- GREEN
- BLACK

Source Computer Network Transmissions That Can Be Seen:
- BLACK, GREEN, BLUE, RED
- BLACK, GREEN, BLUE
- BLACK, GREEN
- BLACK

KEYBOARD/MOUSE:

Destination Workstation Network:
- RED
- BLUE
- GREEN
- BLACK

Source Computer Networks That Can Be Controlled:
- BLACK, GREEN, BLUE, RED
- BLACK, GREEN, BLUE
- BLACK, GREEN
- BLACK

Restricted switching is configured via firmware loaded into the Matrix Switch. The configuration file for this scenario will appear like the table at right.

<table>
<thead>
<tr>
<th>I/O</th>
<th>Number</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>"d"</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>"d"</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>"d"</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>"d"</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>"d"</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>"d"</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>"d"</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>"d"</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>"d"</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>"o"</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>"o"</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>"o"</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>"o"</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>"o"</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>"o"</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>"o"</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>"o"</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>"o"</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Partitioning

Partitions allow TLX, VX and MX Matrix Switch sources and destinations to be segregated. Therefore, destination work stations will only receive signals that are transmitted from source computers in the same partition. In addition, it is impossible for a source computer to be inadvertently routed outside of its designated partition as the signals will not be transmitted.

The user must provide a table defining the partitions. This table is in the form of a **Comma Separated Value (CSV)** file located in `/var/local/router/partition` on the Switch. This file contains the port number and the partitions to which it belongs.

Example: VX80 Switch with four distinct partitions:

![Diagram of VX80 Switch with partitions]

Four partitions set up for secure routing and extension applications. Signals are only capable of transmitting and receiving within a single partition and not across partitions.

The maximum number of partitions is the number of ports that make up the Switch (80, 160, 320, 640). A VX80 can be configured with up to 80 partitions, a VX160 with up to 160, and so forth. There are also overlapping partition configurations.

A VX80 with four partitions: Ports 5-10 are accessible to both partitions 2 and 3.

The following example shows a VX80 Switch with an overlapping partition:

![Diagram of VX80 Switch with overlapping partition]

The Partition Table files are stored on the control card at: `/var/local/router/partition/upstream.csv`

At system power up, upon becoming active after the initial boot-up, the **Primary Control Card** will only evaluate its Partition Table (upstream.csv file) once. The **Secondary Control Card** will NOT evaluate its Partition Table (upstream.csv file) at initial boot-up, but rather when a switchover occurs from Primary to
Secondary Active. If an `upstream.csv` file is found, a log entry to the `daemon.log` file is made indicating “Partition ENABLED”. If no file is found, then a log entry of “Partition DISABLED” is made,

Note: The inactive Secondary Control Card will not verify its Partition Table (csv file), and as a result, not log error messages with current time-stamp entries until it becomes active.

Also, any errors that occur during the Partition Table evaluation process will be logged as “error” with a *field and line invalid* identifier. The `daemon.log` file will be at the following location on the control card: `/var/log/daemon.log`

Note: For access to the `daemon.log` file via SSH, refer to “THE NETWORK INTERFACES” section of this manual (page 8) for correct IP addresses of control cards when in Primary Active or Secondary Active mode.

To verify the **system partition policy**, Thinklogical recommends the following:

1) Review the `daemon.log` file on the active control card and correct any errors in the Partition Table before implementing multiple levels of security classification domains on the same Matrix Switch.

2) Fully test the **Partitioning** on the active Primary Control Card before implementing multiple levels of security classification domains on the same Matrix Switch.

3) In a redundant system, make the Secondary Control Card active by disconnecting the LAN cable from the Primary Control Card’s LAN port. Check the `daemon.log` file on the Secondary Control Card for any errors in the Partition Table and correct them before implementing multiple levels of security classification domains on the same Matrix Switch using the Secondary Control Card.

4) Fully test the Secondary Control Card’s **Partitioning Domains** before implementing multiple levels of security classification domains on the same Matrix Switch.

There are cases where updates to the Partition Table need to be made in an active system. When an update is made to the table, the Controller will not evaluate the updated table until the procedures outlined below are followed.

When updates are made to the Partition Table in a **non-redundant system**, Thinklogical recommends the following *(This procedure will be disruptive to system connections)*:

1) Update the Partition Table of the Primary Control Card.

2) Take the Primary Control Card out of service by following guidelines in the “Safely Remove an Active Control Card” section of this document (pg. 25).

When updates are made to the Partition Table in a **redundant system**, Thinklogical recommends the following *(This procedure will NOT be disruptive to system connections)*:

1) Update the Partition Table of the inactive Secondary Control Card.

2) Take the Primary Control Card out of service by following guidelines in the “Safely Remove an Active Control Card” section of this document (pg. 25). This will cause the Secondary Control Card to become active and evaluate its Partition Table.

3) Update the Partition Table of the inactive Primary Control Card with the same table used for the Secondary Control Card.

4) Extract and re-inserted the Primary Control Card back into the chassis to cause the system to make the Primary Control Card the active controller and begin using the updated Partition Table. Insure that the LAN connection to the Primary Control Card is restored promptly.

Note: When using a Back-up Controller configuration, both controllers must have the same Restricted Switching Table file(s) to maintain the security of the system.

Partition switching is disabled when Partition Table files are removed. By default, when there are no Partition Table files, all ports not listed will default to partition 1. All Switches are shipped without Partition Table files stored on the Control Card and therefore do not restrict any connection.
Administration Access

There are only two methods by which the administrator can access the Switch Controller Configurations:

1. **Using the serial console directly connected to the Switch.** (It should be noted that while no administrator password is required to use the serial console, physical access to the Switch is required, therefore the Switch should be stored in a physically secure location to avoid unauthorized access.)

2. **Using SSH access**
 The Switch allows SSH connections to the Switch for management purposes. SSH sessions are authenticated using an encrypted password file.

Password Security

For security purposes, the Switch defaults to using the Message-Digest Algorithm (MD5) and shadow passwords. *It is highly recommended that you do not alter these settings.* If you select the older Data Encryption Standard (DES) format, passwords will be limited to eight alphanumeric characters (disallowing punctuation and other special characters) with a modest 56-bit level of encryption. **The single most important thing you can do to protect the Switch is create a strong password.**

Creating Strong Passwords:

The password can contain up to 127 characters and cannot contain a space.

MAKE THE PASSWORD AT LEAST EIGHT CHARACTERS LONG. The longer the password, the more effective it will be. If you are using an MD5 password, it should be approximately 15 characters long. With DES passwords, use the maximum eight character length.

MIX UPper AnD LowER CASE LETTERS. Passwords are case sensitive, so mixing will multiply the number of possible combinations.

MIX LETTERS AND NUMBERS within the password to enhance its strength.

INCLUDE NON-ALPHANUMERIC CH@R@CTER$. Special characters (& $ % >) and punctuation marks (? " - !) increase the strength of a password.
Secure Application Examples
The Diagram on pg. 46 shows the TLX640 Matrix Switch in a secure application. The highly secure components are described as the Red Network and the other, lower security components are described as the Black Network. The Red Network, containing the computers (sources), is shown in a physically secure environment along with the TLX Matrix Switch, the computer server used to manage the Switch, and the Network Hub. The Network Hub is a dedicated network used only to connect the TLX Switch to the computer server. This dedicated network does not connect to any other components and does not extend beyond the physically secure environment. The dedicated network connection may be replaced by a direct serial connection (RS-232) between the TLX Switch and the computer server.

The TLX Matrix Switch can be configured to prevent accidental connection from the Red Network to the Black Network using the Restricted Switching feature. For example, the TLX Matrix Switch Network Diagram should be configured with the following csv file:

<table>
<thead>
<tr>
<th>Direction</th>
<th>Number</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>45</td>
<td>1</td>
</tr>
</tbody>
</table>

The following connection rules apply: SOURCE 2 can be connected only to DESTINATION 2 and SOURCE 1 can be connected to both DESTINATION 1 and DESTINATION 2.

⚠️ **Note:** The TLX Matrix Switch and the computer server used to manage the Switch must be protected according to the highest security classification of any component in the entire network application.

⚠️ **Note:** The optical connections and DESTINATION receiver designated as Red Network must be physically secure.

⚠️ **Note:** When using a Back-up Controller configuration, both controllers must have the same Partition Table file(s) to maintain the security of the system.

The configuration of the TLX Matrix Switch should be reviewed regularly to ensure that it continues to meet organizational security policies concerning:

- Changes in the TLX Matrix Switch configuration
- Changes in the organizational security policy
- Changes in the threats presented from non-trusted network interfaces
- Changes in the administration, operation staff or the physical environment of the TLX Matrix Switch